Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

S-Quinolin-2-ylmethyldithiocarbazate

Fiona N.-F. How, ${ }^{\mathbf{a} *} \ddagger$ David J. Watkin, ${ }^{\text {b }}$ Karen A. Crouse ${ }^{\text {a }}$ and M. Ibrahim M. Tahir ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Universiti Putra Malaysia, 43400 UPM, Selangor, Malaysia, and ${ }^{\mathbf{b}}$ Chemical Crystallography, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, England
Correspondence e-mail: howfiona@gmail.com

Received 1 May 2007; accepted 18 May 2007

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.038 ; w R$ factor $=0.079$; data-to-parameter ratio $=18.7$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{~S}_{2}$, there is an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}[2.778$ (2) \AA] hydrogen bond linking the quinoline N atom and the imino N atom. The planar quinoline ring system forms an angle of 67.7 (1) ${ }^{\circ}$ with the dithiocarbazate group. Bond angles for both $\mathrm{S}-\mathrm{C}-\mathrm{S}\left[115.66(8)^{\circ}\right]$ and $\mathrm{N}-$ C-S [119.05 (11) ${ }^{\circ}$] are comparable with cis-trans S-methyldithiocarbazate but differ from those found in trans-cis S methyldithiocarbazate and trans-cis S-benzyldithiocarbazate. This is due to the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond that exists only in the cis-trans conformation found for the title compound.

Related literature

For chemical properties, see: Wang et al. (2002); Zhou et al. (2007). For biological activity, see: Crouse et al. (2004); Ali et al. (2004); Tarafder et al. (2002); Neelam et al. (2000). For similar structures, see: Das \& Livingstone (1976); Crouse et al. (2004); Sutton (1965); Shanmuga Sundara Raj et al. (2000).

For related literature, see: Crouse et al. (2003); Lanfredi et al. (1977); Mattes \& Weber (1980).

Experimental

Crystal data

[^0]\[

$$
\begin{aligned}
& b=10.0620(2) \AA \\
& c=11.2780(2) \AA \\
& \alpha=90^{\circ} \\
& \beta=113.2607(11)^{\circ}
\end{aligned}
$$
\]

\ddagger Current address: Chemical Crystallography, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, England.
$\gamma=90^{\circ}$
$V=1152.17$ (4) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
Data collection
Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski \& Minor, 1997) $T_{\text {min }}=0.78, T_{\text {max }}=0.92$
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.36 \times 0.26 \times 0.20 \mathrm{~mm}$

11993 measured reflections
2717 independent reflections
2717 reflections with $I>-3 \sigma(I)$
$R_{\text {int }}=0.025$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.079$
$S=0.97$
2717 reflections

145 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 10-\mathrm{H} 1 \cdots \mathrm{~N} 6$	0.86	1.96	$2.778(2)$	157

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

FNFH gratefully acknowledges MOSTI, Malaysia, for an Attachment Grant under an NSF Scholarship, and the Chemical Crystallography Laboratory, Oxford University, for instrumental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2133).

References

Ali, M. A., Mirza, A. H., Hamid, M. H. S. A., Bujang, F. H. \& Bernhardt, P. V. (2004). Polyhedron, 23, 2405-2412.

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M. \& Fun, H.-K. (2004). Polyhedron, 23, 161-168.
Crouse, K. A., Chew, K. T., Yamin, B. M., Ng, S. W. \& Tarafder, M. T. H. (2003). Acta Cryst. E59, o148-o150.
Das, M. \& Livingstone, S. E. (1976). Inorg. Chim. Acta, 19, 5-10.
Lanfredi, A. M. M., Tiripicchio, A., Camellini, M. T., Monachi, A. \& Tarli, F. (1977). J. Chem. Soc. Dalton Trans. pp. 417-422.

Mattes, R. \& Weber, H. (1980). J. Chem. Soc. Dalton Trans. pp. 423-425.
Neelam, N., Maurya Mannar, R., Fehmida, N., Alok, B., Sudha, B. \& Amir, A. (2000). Eur. J. Med. Chem. 35, 481-486.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. \& Grouse, K. A. (2000). Acta Cryst. C56, 1236-1237.

organic compounds

Sutton, L. E. (1965). Tables of Interatomic Distances and Conformation in Molecules and Ions, Special Publication No. 18. London: The Chemical Society.
Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. \& Fun, H.-K. (2002). Polyhedron, 21, 2683-2690.

Wang, X., Deng, Z., Jin, B., Tian, Y. \& Lin, X. (2002). Electrochim. Acta, 47, 1537-1543.

Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England
Zhou, H.-P., Li, D.-M., Wang, P., Cheng, L.-H., Gao, Y.-H., Zhu, Y.-M., Wu, J.-Y., Tian, Y.-P., Tao, X.-T., Jiang, M.-H. \& Fun, H.-K. (2007). J. Mol. Struct. 826, 205-210.

supplementary materials

S-Quinolin-2-ylmethyldithiocarbazate

F. N.-F. How, D. J. Watkin, K. A. Crouse and M. I. M. Tahir

Comment

There has been considerable work done on the synthesis and characterization of new compounds derived from S-methyl and S-benzyldithiocarbazate due to the fact that these compounds have donor atoms that chelate with metal ions to form metal complexes with various coordination modes or they can react with carbonyl compounds to yield Schiff bases which may also be multidentate ligands. Most importantly, they and/or their metal complexes are often biologically active. [Crouse et al., 2004; Neelam et al., 2000 \& Tarafder et al., 2002]. Our attempt to synthesize a novel dithiocarbazate ligand was very successful, and eventually led us to the title compound. [Fig. 1.]

The $\mathrm{C}-\mathrm{N}$ bond $[1.3142$ (17) \AA] has some double-bond character. [1.296 (2) \AA for S-2-picolyldithiocarbazate; Crouse et al., 2003] and [1.320 (3) \AA for S-benzyldithiocarbazate; Shanmuga Sundara Raj et al., 2000]. The N10—N11 [1.4056 (17) \AA] is slightly shorter than in cis-trans S-methyldithiocarbazate [1.415 (3) \AA; Lanfredi et al., 1977] and S-2-picolyldithiocarbazate [1.437 (2) Å; Crouse et al., 2003] but comparable with trans-cis Sbenzyldithiocarbazate. [1.406 (3) Å; Shanmuga Sundara Raj et al., 2000]

The $\mathrm{C}=\mathrm{S}$ bond length $[1.6804$ (14) \AA] agrees well with both literature values of 1.679 (4) \AA (Lanfredi et al., 1977) and 1.678 (3) \AA (Shanmuga Sundara Raj et al., 2000) proposed as an intermediate between a single $[1.82 \AA$] and a double bond [1.56 \AA] character [Sutton, 1965]. This was attributed to delocalization of negative charge over the $\mathrm{C}-\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{S}$ chain, which was generated upon deprotonation of the ligands during coordination.

The conformations of the structures were assigned based on significant differences in the bond angles and not the bond lengths. Bond angles of $\mathrm{S}-\mathrm{C}-\mathrm{S}$ and $\mathrm{N}-\mathrm{C}-\mathrm{S}$ differ significantly for both cis-trans and trans-cis conformations. [Mattes \& Weber, 1980]

The bond angles, S8-C9—S12 [115.66(8) $\left.{ }^{\circ}\right]$ and N10-C9—S8 [119.05(11) $\left.{ }^{\circ}\right]$ are agreeable with cis-trans S-methyldithiocarbazate [116.2 (1) ${ }^{\circ}$ and $119.3(1)^{\circ}$; Lanfredi et al., 1977] but was significantly different from trans-cis S-methyldithiocarbazate [125.5 (3) ${ }^{\circ}$ and $113.6(3)^{\circ}$; Mattes \& Weber, 1980] and trans-cis S-benzyldithiocarbazate [125.5 (2) ${ }^{\circ}$ and $113.5(2)^{\circ}$; Shanmuga Sundara Raj et al., 2000]

The significance of the bond angles is related to the existence of intramolecular hydrogen bonds in both cis-trans and trans-cis conformers. $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds only exists in cis-trans conformer while the trans-cis conformer have N—H.. S hydrogen bonds. [Lanfredi et al., 1977, Mattes \& Weber, 1980 \& Shanmuga Sundara Raj et al., 2000]. The type of hydrogen bonding and the bond angles help differentiate between the types of conformation. Therefore, the title compound is confirmed as cis-trans S-quinolin-2ylmethyldithiocarbazate.

The crystal structure consists of layers of aromatic residues lying parallel to the $b c$ plane at $a=0.5$. [Fig. 2.] The dithiocarbazate moieties protrude above and below this plane. Pairs of quinoline rings lie parallel and overlapping with each other (mean separation of $3.4 \AA$). This exhibits the characteristic of a $\pi-\pi$ interaction between the rings. [Fig. 3.]

supplementary materials

There is an intramolecular hydrogen bond N10-H1 $\cdots \mathrm{N} 6\left[2.778(2)^{\circ}\right]$ is slightly shorter than in cis-trans S-methyldithiocarbazate. [2.968 (4) ${ }^{\circ}$; Lanfredi et al., 1977], which stabillizes the conformation of the molecule. [Fig. 1.]

The N11—H3 \cdots S 8 contacts could be considered as a weak intermolecular hydrogen bond because the distance of $\mathrm{H} 3 \cdots \mathrm{~S} 8$ is $2.832(1)^{\circ}$, is smaller than the total radii of $\mathrm{H}(1.20)$ and $\mathrm{S}(1.80)$, which is 3.0° [Fig. 2].

Experimental

Potassium hydroxide (0.2 mol) was dissolved in 90% ethanol (70 ml) and mixed with hydrazine hydrate (0.2 mol). The mixture was placed in an ice salt bath to cool to 273 K . Carbon disulfide (0.2 mol) was added dropwise below 265 K with constant stirring over a period of 1 h . Upon addition of carbon disulfide, two layers were formed. 40% ethanol (60 ml) was added to the brown oil (lower layer) and the mixture was kept in an ice bath. 2-chloromethylquinoline hydrochloride (0.2 $\mathrm{mol})$ dissolved in 80% ethanol $(80 \mathrm{ml})$ was added dropwise with vigorous stirring. The product, cream coloured SQ2MDTC, (I) formed was filtered, recrystallized from ethanol and dried in vacuo over silica gel. (yield 75\%, m.p 414.2-415.7 K). Cystals of SQ2MDTC suitable for X-ray analysis were grown in ethanol through slow evaporation.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry ($\mathrm{C}-\mathrm{H}$ in the range $0.93-0.98, \mathrm{~N}-\mathrm{H}$ in the range $0.86-0.89 \AA$) and $U_{\text {iso }}(\mathrm{H})$ (in the range $1.2-1.5$ times $U_{\text {eq }}$ of the parent atom), after which the positions were refined with riding constraints. The other atoms were refined with anisotropic atomic displacement parameters.

Figures

Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. The molecule is stabilized by intramolecular $\mathrm{N}-\mathrm{H}-\mathrm{N}$ hydrogen bond. Dotted line denotes the $\mathrm{N}-\mathrm{H}-\mathrm{N}$ hydrogen bond.

Fig. 2. The packing of the molecule viewed along the b axis showing the aromatic layer lying parallel to the $b c$ plane at $\mathrm{a}=0.5$.

Fig. 3. The stacking $\pi-\pi$ interaction of pairs of the quinoline rings.

S-quinolin-2-ylmethyldithiocarbazate

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}_{2}$
$M_{r}=249.36$
Monoclinic, $P 2{ }_{1} / c$
$a=11.0514$ (2) \AA
$b=10.0620(2) \AA$
$c=11.2780(2) \AA$
$\beta=113.2607(11)^{\circ}$
$V=1152.17$ (4) \AA^{3}
$Z=4$
$D_{\mathrm{x}}=1.437 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 415.7 K
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2735 reflections
$\theta=5-28^{\circ}$
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, yellow
$0.36 \times 0.26 \times 0.20 \mathrm{~mm}$
$F_{000}=520$

Data collection

Nonius KappaCCD area-detector
2717 reflections with $I>-3 \sigma(I)$

supplementary materials

diffractometer

Monochromator: graphite
$T=150 \mathrm{~K}$
ω scans
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.78, T_{\text {max }}=0.92$
11993 measured reflections
2717 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.079$
$S=0.97$
2717 reflections
145 parameters
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=27.9^{\circ}$
$\theta_{\text {min }}=5.2^{\circ}$
$h=-14 \rightarrow 14$
$k=-11 \rightarrow 13$
$l=-14 \rightarrow 14$

Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
Method $=$ modified Sheldrick $w=1 /\left[\sigma^{2}\left(F^{2}\right)+(\right.$
$\left.0.02 P)^{2}+0.66 P\right]$,
where $P=\left[\max \left(F_{\mathrm{o}}{ }^{2}, 0\right)+2{F_{\mathrm{c}}}^{2}\right] / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.37 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}$
Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.48620(13)$	$0.67545(14)$	$0.41804(12)$	0.0223
C2	$0.60247(14)$	$0.60714(15)$	$0.42925(14)$	0.0260
C3	$0.58815(16)$	$0.48964(16)$	$0.35641(15)$	0.0328
C4	$0.46609(16)$	$0.44675(15)$	$0.27809(14)$	0.0311
C5	$0.35528(14)$	$0.52185(14)$	$0.26985(13)$	0.0252
N6	$0.36434(11)$	$0.63152(12)$	$0.33708(11)$	0.0233
C7	$0.21899(16)$	$0.48171(16)$	$0.17912(14)$	0.0326
S8	$0.16795(4)$	$0.56396(4)$	$0.02240(3)$	0.0284
C9	$0.11613(13)$	$0.72301(15)$	$0.04637(13)$	0.0235
N10	$0.14555(12)$	$0.76515(13)$	$0.16482(11)$	0.0250
N11	$0.11690(13)$	$0.89477(13)$	$0.19239(12)$	0.0307
S12	$0.03297(4)$	$0.81044(4)$	$-0.08834(3)$	0.0302
C13	$0.72616(16)$	$0.65867(18)$	$0.51324(16)$	0.0369
C14	$0.73288(17)$	$0.77111(19)$	$0.58239(16)$	0.0413
C15	$0.61735(18)$	$0.83803(17)$	$0.57193(15)$	0.0372
C16	$0.49628(16)$	$0.79170(15)$	$0.49167(14)$	0.0291
H31	0.6658	0.4422	0.3632	0.0419^{*}
H41	0.4521	0.3684	0.2293	0.0390^{*}
H71	0.1548	0.5028	0.2159	0.0368^{*}

sup-4

H72	0.2190	0.3877	0.1611	0.0368^{*}
H131	0.8015	0.6126	0.5194	0.0431^{*}
H141	0.8138	0.8033	0.6377	0.0442^{*}
H151	0.6249	0.9149	0.6204	0.0422^{*}
H161	0.4192	0.8344	0.4858	0.0353^{*}
H1	0.1992	0.7206	0.2298	0.0303^{*}
H2	0.0887	0.9460	0.1277	0.0390^{*}
H3	0.0912	0.8983	0.2537	0.0395^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0250(7)$	$0.0228(7)$	$0.0189(6)$	$0.0008(5)$	$0.0085(5)$	$0.0039(5)$
C2	$0.0258(7)$	$0.0294(7)$	$0.0237(7)$	$0.0042(6)$	$0.0105(6)$	$0.0084(6)$
C3	$0.0370(8)$	$0.0352(8)$	$0.0309(8)$	$0.0145(7)$	$0.0183(7)$	$0.0072(7)$
C4	$0.0459(9)$	$0.0252(7)$	$0.0233(7)$	$0.0072(6)$	$0.0148(7)$	$0.0006(6)$
C5	$0.0327(8)$	$0.0231(7)$	$0.0182(6)$	$-0.0009(6)$	$0.0083(6)$	$0.0040(5)$
N6	$0.0239(6)$	$0.0243(6)$	$0.0203(5)$	$0.0014(5)$	$0.0072(5)$	$0.0026(5)$
C7	$0.0394(9)$	$0.0266(7)$	$0.0257(7)$	$-0.0068(6)$	$0.0063(6)$	$0.0029(6)$
S8	$0.0326(2)$	$0.02827(19)$	$0.01951(18)$	$-0.00116(15)$	$0.00525(15)$	$-0.00155(14)$
C9	$0.0186(6)$	$0.0308(7)$	$0.0206(6)$	$-0.0027(5)$	$0.0074(5)$	$-0.0001(6)$
N10	$0.0236(6)$	$0.0315(6)$	$0.0182(5)$	$0.0040(5)$	$0.0063(5)$	$0.0022(5)$
N11	$0.0331(7)$	$0.0355(7)$	$0.0216(6)$	$0.0093(6)$	$0.0089(5)$	$0.0004(5)$
S12	$0.0314(2)$	$0.0362(2)$	$0.01872(18)$	$0.00486(15)$	$0.00525(15)$	$0.00255(15)$
C13	$0.0243(7)$	$0.0456(9)$	$0.0362(8)$	$0.0023(7)$	$0.0071(6)$	$0.0147(8)$
C14	$0.0340(9)$	$0.0454(10)$	$0.0301(8)$	$-0.0136(7)$	$-0.0028(7)$	$0.0114(7)$
C15 5	$0.0518(10)$	$0.0280(8)$	$0.0250(7)$	$-0.0102(7)$	$0.0079(7)$	$0.0002(6)$
C16	$0.0369(8)$	$0.0249(7)$	$0.0248(7)$	$0.0016(6)$	$0.0114(6)$	$0.0005(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.4181(19)$
$\mathrm{C} 1-\mathrm{N} 6$	$1.3680(18)$
$\mathrm{C} 1-\mathrm{C} 16$	$1.413(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.413(2)$
$\mathrm{C} 2-\mathrm{C} 13$	$1.418(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.358(2)$
$\mathrm{C} 3-\mathrm{H} 31$	0.958
$\mathrm{C} 4-\mathrm{C} 5$	$1.410(2)$
C4-H41	0.938
C5-N6	$1.3201(18)$
C5-C7	$1.504(2)$
C7-S8	$1.8275(15)$
C7-H71	0.976
C7-H72	0.967
C2-C1-N6	$121.42(13)$
C2-C1-C16	$119.36(13)$
N6-C1-C16	$119.21(13)$

S8-C9	$1.7563(15)$
$\mathrm{C} 9-\mathrm{N} 10$	$1.3142(17)$
$\mathrm{C} 9-\mathrm{S} 12$	$1.6804(14)$
$\mathrm{N} 10-\mathrm{N} 11$	$1.4056(17)$
$\mathrm{N} 10-\mathrm{H} 1$	0.864
$\mathrm{~N} 11-\mathrm{H} 2$	0.846
$\mathrm{~N} 11-\mathrm{H} 3$	0.845
$\mathrm{C} 13-\mathrm{C} 14$	$1.359(3)$
$\mathrm{C} 13-\mathrm{H} 131$	0.931
$\mathrm{C} 14-\mathrm{C} 15$	$1.407(3)$
$\mathrm{C} 14-\mathrm{H} 141$	0.924
$\mathrm{C} 15-\mathrm{C} 16$	$1.368(2)$
$\mathrm{C} 15-\mathrm{H} 151$	0.932
$\mathrm{C} 16-\mathrm{H} 161$	0.933
C7-S8-C9	$104.99(7)$
S8-C9-N10	$119.05(11)$
S8-C9-S12	$115.66(8)$

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$117.67(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 13$	$118.86(14)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 13$	$123.47(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.90(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 31$	118.6
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 31$	121.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.09(14)$
C3-C4-H41	122.6
C5-C4-H41	118.3
C4-C5-N6	$122.89(14)$
C4-C5-C7	$120.75(14)$
N6-C5-C7	$116.34(13)$
C1-N6-C5	$119.01(12)$
C5-C7-S8	$112.34(10)$
C5-C7-H71	110.7
S8-C7-H71	108.3
C5-C7-H72	108.8
S8-C7-H72	105.4
H71-C7-H72	111.2

$\mathrm{N} 10-\mathrm{C} 9-\mathrm{S} 12$	$125.28(11)$
$\mathrm{C} 9-\mathrm{N} 10-\mathrm{N} 11$	$122.50(12)$
$\mathrm{C} 9-\mathrm{N} 10-\mathrm{H} 1$	120.4
$\mathrm{~N} 11-\mathrm{N} 10-\mathrm{H} 1$	115.7
$\mathrm{~N} 10-\mathrm{N} 11-\mathrm{H} 2$	114.4
$\mathrm{~N} 10-\mathrm{N} 11-\mathrm{H} 3$	113.4
$\mathrm{H} 2-\mathrm{N} 11-\mathrm{H} 3$	123.4
$\mathrm{C} 2-\mathrm{C} 13-\mathrm{C} 14$	$120.48(16)$
$\mathrm{C} 2-\mathrm{C} 13-\mathrm{H} 131$	117.7
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 131$	121.8
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$120.54(15)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 141$	119.9
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 141$	119.6
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$120.71(16)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 151$	118.7
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 151$	120.6
C1-C16-C15	120.04 (15)
C1-C16-H161	118.8
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 161$	121.2

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 10-\mathrm{H} 1 \cdots \mathrm{~N} 6$	0.86	1.96	$2.778(2)$	157

Fig. 1

Fig. 2

Fig. 3

[^0]: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}_{2}$
 $M_{r}=249.36$
 Monoclinic, $P 2_{1} / c$
 $a=11.0514$ (2) \AA

